
Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

Lecture 12!
!

Reduction!
!

A few more CUDA issues!
!

Sorting on GPU

1(85)

1(85)

Information Coding / Computer Graphics, ISY, LiTH

Last time!
!

• Coalescing!
!

• Constant memory!
!

• Texture memory!
!

• OpenGL interoperability

2(85)2(85)

Information Coding / Computer Graphics, ISY, LiTH

A bonus demo on texture memory!
!

texobjdemo.cu!
!

Simple texture memory example.!
!

Array of numbers, accessed at non-integer
coordinates.

3(85)3(85)

Information Coding / Computer Graphics, ISY, LiTH

1 0 1 0
0.

75
1.

0

0.
50

0.
25

0.
00

0.
25

0.
75

0.
50

0.
25

0.
50

0.
75

1.
0

0.
00

4(85)4(85)

Information Coding / Computer Graphics, ISY, LiTH

Upcoming and ongoing labs!
!

Lab 4: Intro to CUDA, Mandelbrot!
!

This week.!
!

Lab 5: Image filtering.!
!

Shared memory in focus!!
!

Lab 6: Reduction and sorting with OpenCL.

5(85)5(85)

Information Coding / Computer Graphics, ISY, LiTH

Lecture questions!
!

1) How can you efficiently compute the average
of a dataset with CUDA?!

!
2) In what way does bitonic sort fit the GPU
better than many other sorting algorithms?!

!
3) What is the reason to use pinned memory?!

!
4) What problem does atomics solve?

6(85)6(85)

Information Coding / Computer Graphics, ISY, LiTH

Reduction!
!

Parallelizing problems of limited parallel nature!
!

Problem seen in Kesser 1.3.1.4 and 1.5.2-1.5.4
Global sum.

7(85)7(85)

Information Coding / Computer Graphics, ISY, LiTH

Examples of reduction algorithms!
!

Extracting small data from larger!
!

• Finding max or min!
!

• Calculating median or average!
!

• Histograms!
!

Common problems!

8(85)8(85)

Information Coding / Computer Graphics, ISY, LiTH

Sequentially trivial!
!

Loop through data!
!

Add/min/max, accumulate results!
!

Fits badly in massive parallelism!

9(85)9(85)

Information Coding / Computer Graphics, ISY, LiTH

Tree-based approach

43

3143

4335 2231

4312 2231535 831

10(85)10(85)

Information Coding / Computer Graphics, ISY, LiTH

In 2D, typically 4-to-1 per level!
!

Pyramid hierarchy

11(85)11(85)

Information Coding / Computer Graphics, ISY, LiTH

Tree-based approach!
!

Each level parallel! Can be split onto large
numbers of threads!

!
but!
!

the parallelism is reduced for each level, and
the results need to be reorganized to a

smaller number of threads!

12(85)12(85)

Information Coding / Computer Graphics, ISY, LiTH

43

3143

4335 2231

4312 2231535 831

4

2

1

8

etc
16

13(85)13(85)

Information Coding / Computer Graphics, ISY, LiTH

Multiple kernel runs for varying size!!
!

For n = k downto 0 do!
Launch 2n kernels!

!

Multiple levels can be merged into one - but not all
of them!

14(85)14(85)

Information Coding / Computer Graphics, ISY, LiTH

Important note: You can not
synchronize between blocks!!

!
Why?!
!

• Complex hardware!
• Risk for deadlock between blocks
that are not simultaneously active

(Picture by Mark Harris, NVidia)

15(85)15(85)

Information Coding / Computer Graphics, ISY, LiTH

Multiple levels per kernel run for
avoiding overhead

(Picture by Mark Harris, NVidia)

16(85)16(85)

Information Coding / Computer Graphics, ISY, LiTH

Many important optimizations:!
!

• Avoid "if" statements, divergent branches!
• Avoid bank conflicts in shared memory!
• Loop unrolling to avoid loop overhead

(classic old-style optimization!)

17(85)17(85)

Information Coding / Computer Graphics, ISY, LiTH

Huge speed difference reported by Harris

18(85)18(85)

Information Coding / Computer Graphics, ISY, LiTH

Alternative: Reduction in many levels,
but making sure idle threads are dense!!

!
With every other thread idle/finished -

half the performance.!
!

With every other warp idle finished -
good performance!

19(85)19(85)

Information Coding / Computer Graphics, ISY, LiTH

Skip every other thread over and over
in same kernel - waste!

20(85)20(85)

Information Coding / Computer Graphics, ISY, LiTH

Keep active threads together - better!

Threads and memory both behave like this for coalescing.

21(85)21(85)

Information Coding / Computer Graphics, ISY, LiTH

Conclusions:!
!

• Multiple kernel runs for varying problem size!
• Multiple kernel runs for synchronizing blocks!
• Optimizing matters! Not only shared memory

and coalescing!

22(85)22(85)

Information Coding / Computer Graphics, ISY, LiTH

Managed memory!
!

Makes read/write memory as easy as constant!!
!

New, simpler Hello World!
#include <stdio.h>!
!
const int N = 16; !
const int blocksize = 16; !
!
__global__ !
void hello(char *a, int *b) !
{!
!a[threadIdx.x] += b[threadIdx.x];!
}!
!
__managed__ char a[N] = "Hello \0\0\0\0\0\0";!
__managed__ int b[N] = {15, 10, 6, 0, -11, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

int main()!
{!
!printf("%s", a);!
!dim3 dimBlock(blocksize, 1);!
!dim3 dimGrid(1, 1);!
!hello<<<dimGrid, dimBlock>>>(a, b);!
!cudaDeviceSynchronize(); // Synchronize!
!!
!printf("%s\n", a);!
!return EXIT_SUCCESS;!
}

23(85)23(85)

Information Coding / Computer Graphics, ISY, LiTH

Managed memory!
!

Managed memory must be declared
__managed__!

!
Memory accessible both from CPU and GPU.!

!
Do not expect performance penalty (but always

be ready for surprises).

24(85)24(85)

