llllllll

Information Coding / Computer Graphics, ISY, LiTH

Lecture 12
Reduction
A few more CUDA issues

Sorting on GPU

1(85)

llllllll

Information Coding / Computer Graphics, ISY, LiTH

Last time
- Coalescing
- Constant memory
* Texture memory

- OpenGL interoperability

2(85)

{j Information Coding / Computer Graphics, ISY, LiTH
44

-"l
4,
L

A bonus demo on texture memory
texobjdemo.cu
Simple texture memory example.

Array of numbers, accessed at non-integer
coordinates.

3(85)

Information Coding / Computer Graphics, ISY, LiTH

O

0O

1.0

0.75 |

0.50 |-

0.25 |-

0.00 |«

0.25 |+

0.50 |-

0.75 |
1.0

0.75 |-

0.50 |«

0.25 |-

0.00 |

4(85)

Information Coding / Computer Graphics, ISY, LiTH

Upcoming and ongoing labs
Lab 4: Intro to CUDA, Mandelbrot
This week.

Lab 5: Image filtering.

Shared memory in focus!

Lab 6: Reduction and sorting with OpenCL.

5(85)

12} Information Coding / Computer Graphics, ISY, LiTH

“
.....

Lecture questions

1) How can you efficiently compute the average
of a dataset with CUDA?

2) In what way does bitonic sort fit the GPU
better than many other sorting algorithms?

3) What is the reason to use pinned memory?

4) What problem does atomics solve?

6(85)

“’d"‘i Information Coding / Computer Graphics, ISY, LiTH
P/

,'I
4
)"\t.’ « B

Reduction

Parallelizing problems of limited parallel nature

Problem seen in Kesser 1.3.1.4 and 1.5.2-1.5.4
Global sum.

7(85)

g Information Coding / Computer Graphics, ISY, LiTH
=

Examples of reduction algorithms
Extracting small data from larger
* Finding max or min
- Calculating median or average
- Histograms

Common problems!

8(85)

~—d"‘; Information Coding / Computer Graphics, ISY, LiTH
P/

“
%
o

Sequentially trivial
Loop through data
Add/min/max, accumulate results

Fits badly in massive parallelism!

9(85)

..........

"d’&: Information Coding / Computer Graphics, ISY, LiTH
% v/

Tree-based approach

12)(35) (43 (15) (3)(31) (22) (8,
3y @43 3y @2

111111

Information Coding / Computer Graphics, ISY, LiTH

In 2D, typically 4-to-1 per level
Pyramid hierarchy

19 11 47 57 15 H
38 29 38 64 68 35
37 28 46 49 61 52
46 1 48 40 61 51 44 43 71 67 69 70

|55‘71‘ 4 58 69 62 50 60
|30'65|66 67 24 59 70 56

11(85)

12} Information Coding / Computer Graphics, ISY, LiTH

“
.....

Tree-based approach

Each level parallel! Can be split onto large
numbers of threads

but

the parallelism is reduced for each level, and
the results need to be reorganized to a
smaller number of threads!

12(85)

Information Coding / Computer Graphics, ISY, LiTH

16

\
8 1235 (4305 (3) B
4 KD

12} Information Coding / Computer Graphics, ISY, LiTH

“
.....

Multiple kernel runs for varying size!

For n = k downto 0 do
Launch 2" kernels

Multiple levels can be merged into one - but not all

of them!

14(85)

% Information Coding / Computer Graphics, ISY, LiTH

Important note: You can not
synchronize between blocks!

Why?

- Complex hardware
* Risk for deadlock between blocks
that are not simultaneously active

(Picture by Mark Harris, NVidia)

15(85)

"d’ﬁi Information Coding / Computer Graphics, ISY, LiTH
44

"l
4y
»’\7; » v

Multiple levels per kernel run for
avoiding overhead

wwww wwww Level O:

8 blocks

\ \ / 7”7
= ™ L 7 ~ -
: Level 1:
1 block

(Picture by Mark Harris, NVidia)

16(85)

12} Information Coding / Computer Graphics, ISY, LiTH

“
%%%%%

Many important optimizations:

- Avoid "if" statements, divergent branches
* Avoid bank conflicts in shared memory
* Loop unrolling to avoid loop overhead
(classic old-style optimization!)

17(85)

s,
-

g Information Coding / Computer Graphics, ISY, LiTH
P/

I’l
4,
o

Huge speed difference reported by Harris

Step Cumulative
Time (222ints) Bandwidth gpeedup Speedup

Kernel 1:

interleaved addressing 8.054 ms 2.083 GB/s

with divergent branching

Kernel 2:

interleaved addressing 3.456 ms 4.854 GB/s 2.33x 2.33x
with bank conflicts

Kernel 3: 1.722ms 9.741GB/s 2.01x 4.68x
sequential addressing

Kernel 4:

L e clobal load 0.965ms 17.377GB/s 1.78x 8.34x
Kernel 5: 0.536ms 31.289GB/s 1.8x 15.01x
Kernel©: 0.381ms 43.996GB/s 1.41x 21.16x
Kernel 7: 0.268 ms 62.671 GB/s 1.42x 30.04x

multiple elements per thread

18(85)

........
. o

JZ} Information Coding / Computer Graphics, ISY, LiTH

Alternative: Reduction in many levels,
but making sure idle threads are dense!

With every other thread idle/finished -
half the performance.

With every other warp idle finished -
good performance!

19(85)

Information Coding / Computer Graphics, ISY, LiTH

o COMNG
& qﬁ;
o\ - -
.
thn:

- Skip every other thread over and over
In same kernel - waste!

e

HE B BB EEN
B B B
] L]

20(85)

e COMNgG |

& "k
I @ Information Coding / Computer Graphics, ISY, LiTH
%”mnl

Keep active threads together - better!

Threads and memory both behave like this for coalescing.

21(85)

12} Information Coding / Computer Graphics, ISY, LiTH

“
.....

Conclusions:

* Multiple kernel runs for varying problem size

 Multiple kernel runs for synchronizing blocks

- Optimizing matters! Not only shared memory
and coalescing!

22(85)

d Information Coding / Computer Graphics, ISY, LiTH
e

Managed memory
Makes read/write memory as easy as constant!

New, simpler Hello World!

#include <stdio.h> int main()
{
const int N = 16; printf("%s", a);
const int blocksize = 16; dim3 dimBlock(blocksize, 1);
dim3 dimGrid(1, 1);
__global__ hello<x<<dimGrid, dimBlock>>>(a, b);
void hello(char *a, int *b) cudaDeviceSynchronize(); // Synchronize
{
a[threadldx.x] += b[threadldx.x]; printf("%s\n", a);
} return EXIT_SUCCESS;

}
__managed__ char a[N] = "Hello \O\O\O\O\O\0";
__managed__ int b[N] = {15, 10, 6,0,-11,1,0,0, 0,0, O, 0, O, O, 0, 0};

23(85)

o COMNG
& b
- -
~ -
. -
% vj
4,
g . W

Information Coding / Computer Graphics, ISY, LiTH

Managed memory

Managed memory must be declared
__managed___

Memory accessible both from CPU and GPU.

Do not expect performance penalty (but always
be ready for surprises).

24(85)

