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Lecture 12!
!

Reduction!
!

A few more CUDA issues!
!

Sorting on GPU
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Last time!
!

• Coalescing!
!

• Constant memory!
!

• Texture memory!
!

• OpenGL interoperability

2(85)2(85)



Information Coding / Computer Graphics, ISY, LiTH

A bonus demo on texture memory!
!

texobjdemo.cu!
!

Simple texture memory example.!
!

Array of numbers, accessed at non-integer 
coordinates.
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Upcoming and ongoing labs!
!

Lab 4: Intro to CUDA, Mandelbrot!
!

This week.!
!

Lab 5: Image filtering.!
!

Shared memory in focus!!
!

Lab 6: Reduction and sorting with OpenCL.
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Lecture questions!
!

1) How can you efficiently compute the average 
of a dataset with CUDA?!

!
2) In what way does bitonic sort fit the GPU 
better than many other sorting algorithms?!

!
3) What is the reason to use pinned memory?!

!
4) What problem does atomics solve?
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Reduction!
!

Parallelizing problems of limited parallel nature!
!

Problem seen in Kesser 1.3.1.4 and 1.5.2-1.5.4  
Global sum.
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Examples of reduction algorithms!
!

Extracting small data from larger!
!

• Finding max or min!
!

• Calculating median or average!
!

• Histograms!
!

Common problems!
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Sequentially trivial!
!

Loop through data!
!

Add/min/max, accumulate results!
!

Fits badly in massive parallelism!
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Tree-based approach
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In 2D, typically 4-to-1 per level!
!

Pyramid hierarchy
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Tree-based approach!
!

Each level parallel! Can be split onto large 
numbers of threads!

!
but!
!

the parallelism is reduced for each level, and 
the results need to be reorganized to a 

smaller number of threads!
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Multiple kernel runs for varying size!!
!

For n = k downto 0 do!
Launch 2n kernels!

!

Multiple levels can be merged into one - but not all 
of them!
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Important note: You can not 
synchronize between blocks!!

!
Why?!
!

• Complex hardware!
• Risk for deadlock between blocks 
that are not simultaneously active

(Picture by Mark Harris, NVidia)
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Multiple levels per kernel run for 
avoiding overhead

(Picture by Mark Harris, NVidia)
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Many important optimizations:!
!

• Avoid "if" statements, divergent branches!
• Avoid bank conflicts in shared memory!
• Loop unrolling to avoid loop overhead 

(classic old-style optimization!)
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Huge speed difference reported by Harris
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Alternative: Reduction in many levels, 
but making sure idle threads are dense!!

!
With every other thread idle/finished - 

half the performance.!
!

With every other warp idle finished - 
good performance!
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Skip every other thread over and over 
in same kernel - waste!
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Keep active threads together - better!

Threads and memory both behave like this for coalescing.
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Conclusions:!
!

• Multiple kernel runs for varying problem size!
• Multiple kernel runs for synchronizing blocks!
• Optimizing matters! Not only shared memory 

and coalescing!
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Managed memory!
!

Makes read/write memory as easy as constant!!
!

New, simpler Hello World!
#include <stdio.h>!
!
const int N = 16; !
const int blocksize = 16; !
!
__global__ !
void hello(char *a, int *b) !
{!
!a[threadIdx.x] += b[threadIdx.x];!
}!
!
__managed__ char a[N] = "Hello \0\0\0\0\0\0";!
__managed__ int b[N] = {15, 10, 6, 0, -11, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

int main()!
{!
!printf("%s", a);!
!dim3 dimBlock( blocksize, 1 );!
!dim3 dimGrid( 1, 1 );!
!hello<<<dimGrid, dimBlock>>>(a, b);!
!cudaDeviceSynchronize(); // Synchronize!
!!
!printf("%s\n", a);!
!return EXIT_SUCCESS;!
}
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Managed memory!
!

Managed memory must be declared 
__managed__!

!
Memory accessible both from CPU and GPU.!

!
Do not expect performance penalty (but always 

be ready for surprises).
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